Abstract: Bayesian inference provides a methodology for parameter estimation and uncertainty quantification in machine learning and deep learning methods. Variational inference and Markov Chain ...
Learn how Network in Network (NiN) architectures work and how to implement them using PyTorch. This tutorial covers the concept, benefits, and step-by-step coding examples to help you build better ...
Binary neural network with 0/1 invert weights. Trained with evolutionary reinforcement algorithm, at various cycle counts. Swapped memory array is filled with data at inputs and zeros otherwise.
Abstract: This advanced tutorial explores some recent applications of artificial neural networks (ANNs) to stochastic discrete-event simulation (DES). We first review some basic concepts and then give ...
Artificial intelligence might now be solving advanced math, performing complex reasoning, and even using personal computers, but today’s algorithms could still learn a thing or two from microscopic ...
“Neural networks are currently the most powerful tools in artificial intelligence,” said Sebastian Wetzel, a researcher at the Perimeter Institute for Theoretical Physics. “When we scale them up to ...
The simplified approach makes it easier to see how neural networks produce the outputs they do. A tweak to the way artificial neurons work in neural networks could make AIs easier to decipher.
In this study we focus on two subnetworks common in the circuitry of swim central pattern generators (CPGs) in the sea slugs, Melibe leonina and Dendronotus iris and show that they are independently ...
The most significant addition to the Java language since Sun Microsystems rewrote the collections API for Java 5 is the introduction of Java records. Java records address two significant pain points ...